

115

2018 International Conference on Information Management and Processing

Towards Inheritance in Graph Databases

Kornelije Rabuzin, Martina Šestak
Faculty of Organization and Informatics

University of Zagreb
Varazdin, Croatia

e-mail: {kornelije.rabuzin, msestak2}@foi.hr

Abstract—Object-oriented database management systems
represent a technology in which the concepts of the object-
oriented programming paradigm are implemented in
databases. The impedance mismatch problem between
different technologies (e.g., relational and object-oriented) has
represented a challenge for developers and researchers for
many years now. With the growing popularity of graph
databases, it is important to resolve differences between the
concepts of graph theory (used in graph databases) and the
object-oriented paradigm. In this paper, we propose an
approach for representing graph nodes as objects, and
introduce the concept of node inheritance in graph databases,
which we demonstrate on a simple showcase.

Keywords-object-oriented paradigm; instantiation;
inheritance; graph databases; Neo4j; nodes; gremlin by example

I. INTRODUCTION
The object-oriented (OO) paradigm represents an

approach which focuses on modular component design and
software reuse [1]. Classes and objects represent basic
concepts behind this paradigm. Classes can be defined as
“extensible templates for creating objects, providing initial
values for instance variables and the bodies for methods” [2].
On the other hand, an object represents “a concrete entity
based on a class, and is sometimes referred to as an instance
of a class” [3]. Thus, a class “is like a blueprint. It defines the
data and behavior of a type” [3].

When the concepts of the object-oriented paradigm are
implemented in a database management system (DBMS),
such a system is then called an object-oriented database
management system (OODBMS). However, storing and
retrieving data from databases by using OO concepts is not
always trivial, since data representations can vary between
the two technologies (this problem is called impedance
mismatch). In the case of relational databases, this issue was
solved by introducing object-relational mappers (ORMs) and
object-relational database management systems (e.g.,
PostgreSQL), which can only be seen as a transitional
solution for the problem. Moreover, this problem occurs with
other database technologies as well, one of which are graph
databases.

In general, OO systems support several reusability
mechanisms, which enable developers to use the existing
components when developing new components [4]. For the
purpose of this paper, we will only mention the instantiation
and inheritance mechanisms. The instantiation mechanism
enables developers to use the same object definition to

generate new objects with the same structure and behavior
[5]. Inheritance represents one of the pillars of the OO
paradigm (along with polymorphism and encapsulation), and
refers to using and extending a definition of an already
defined class [6], i.e., deriving data and behavior from the
base class [3]. To manage inheritance hierarchies and
represent the object database model in OODBMSs, several
approaches have been introduced over the years, some of
which proposed a graph-based model for the purpose, and
will be discussed later in the paper.

On the other hand, the growing amount of highly
connected and complex data has led to the development of
graph databases as a separate category of NoSQL databases.
In graph databases, data is stored and represented as a graph,
so different graph-related algorithms can be applied when
querying graph databases.

In this paper, we are going to explore basic
characteristics of both standard OODBMSs and graph
databases. This research is implemented for the purpose of
incident command system (ICS). In incident command
system different types of resources are available, and some
resources are similar. To represent different types of
resources and their connections, graph databases could be
used. To enable easier management of resources in graph
databases, we extend the research and we propose and
integrate OO inheritance mechanisms with graph databases.
The main contribution of this paper is to provide a theoretical
basis for introducing the instantiation and inheritance
mechanisms to graph databases.

The rest of the paper is organized as follows: in Section
2, basic concepts of the OO paradigm will be discussed in
the context of OODBMSs in general and in the context of
relevant features available in PostgreSQL. In Section 3,
graph databases and the underlying graph theory will be
explained. Section 4 contains the description of several
existing approaches regarding representing both object-
oriented data model as a graph, and vice versa. In Section 5,
the proposed approach for implementing basic OO concepts
(class, object, instantiation, inheritance) in graph databases is
discussed. Finally, the possibilities for extending this paper
and future research will be discussed.

II. OBJECT-ORIENTED CONCEPTS IN DATABASE
MANAGEMENT SYSTEMS

A standard OODBMS should provide support for
creating classes, objects as class instances, for creating
inheritance hierarchies, and to call methods for accessing

978-1-5386-3656-5/18/$31.00 ©2018 IEEE

116

objects [7], where each object is identified through a unique
ID called OID. According to [8], an OODBMS supports the
concepts of subtyping and inheritance.

The instantiation mechanism is implemented by creating
new objects as base class instances (objects then have the
same properties and methods as the base class). Conversely,
the inheritance mechanism is usually implemented as
structural subtyping [9], whereas the behavioral subtyping is
a more complex process, which requires a number of
preconditions to be met.

Over the years, some OO concepts have been
implemented in relational database management systems
(RDBMSs), thus creating object-relational database
management systems (e.g., PostgreSQL).

Specifically, table inheritance is supported by several
DBMS systems. For instance, IBM’s Informix supports table
inheritance for tables that are defined on named row types
[10]. They also list the benefits of table inheritance [10]:

• It encourages modular implementation of your data
model.

• It ensures consistent reuse of schema components.
• It allows you to construct queries whose scope can

be some or all of the tables in the table hierarchy.
One example is given in Fig. 1.

Figure 1. An example of table inheritance [9]

Figure 2. An example of table inheritance in PostgreSQL [10]

Different objects can be inherited, including constraints,
triggers, indexes, etc. In PostgreSQL, inheritance is
supported in two forms [11].

The first form is table inheritance (shown in Fig. 2); table
“capitals” inherits table “cities”, but it is also possible that
one table inherits several other tables. When writing queries,
one can get the rows from the table, as well as the rows from
the table extended by the rows from all tables that inherit the
table (such behavior is the default behavior). The word

ONLY used in the clause FROM will return only the rows
from the table, and exclude the rows from its descendants.

Another option is known as CREATE TABLE … LIKE
… After LIKE one has to specify the table which columns,
data types and NOT NULL constraints should be copied
[11].

III. GRAPH DATABASES CHARACTERISTICS
Recently, it has become clear that social networks, traffic

infrastructure, network infrastructure, etc. represent good
candidates to be modeled as graphs.

Graph contains nodes, i.e., vertices (points A, B, C, D)
and relationships (lines) between the vertices, i.e., edges
(Fig. 3). More formally, a simple graph G has a set of
vertices V(G) as well as the set of edges E(G). Each edge
that belongs to E(G) is a pair of elements that belong to
V(G); in simple graphs pair of elements are distinct as loops
are not part of simple graphs, as well as multiple edges. Also,
in graph theory there is a question whether two graphs are
the same. This is known as isomorphism.

The importance of directed graphs is crucial for graph
databases. “A directed graph, or digraph, D consists of a
non-empty finite set V(D) of elements called vertices, and a
finite family A(D) of ordered pairs of elements of V(D)
called arcs” [12]. It is important to have in mind that "the
ordering of the vertices in an arc is being indicated by an
arrow" [12].

Figure 3. Example of a graph

Nowadays, the aforementioned properties of graphs have
been implemented in graph databases. Graph databases are a
category of NoSQL databases with a growing popularity
among users over the last few years. This is due to the
increasing amount of highly connected data, where both the
information about real-world entities and the information
about the nature of their relationship need to be stored for
further processing.

The underlying data model of graph databases is a graph.
There are several graph data models, which can be used to
store data in graph databases. In this paper, we will use the
labelled property graph data model due to its simplicity.

In property graph data model, real-world entities are
stored as nodes (vertices) of the graph, while their
connections are stored as relationships (edges) between those
nodes. Both nodes and edges can have properties in the form
of key-value pairs, and labels to distinguish different node
and edge types.

CREATE TABLE person OF TYPE person_t
(PRIMARY KEY (name))
FRAGMENT BY EXPRESSION
name < 'n' IN dbspace1,
name >= 'n' IN dbspace2;

CREATE TABLE employee OF TYPE
employee_t
(CHECK(salary > 34000))
UNDER person;

CREATE TABLE cities (
 name text,
 population float,
 altitude int -- in feet
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

117

Although we plan to represent ICS resources in graph
databases, for the purpose of this paper, we have developed a
simple graph model of books shown in Fig. 4. The model
consists of three nodes labelled "Book", "Author" and
"Genre", and two edges of type "WROTE" and "PART_OF".
The interpretation of the sample graph would be: William
Shakespeare (author) wrote Romeo and Juliet (book
published in 1597), which is part of the tragedy genre.

This model was implemented in the Neo4j graph
database by using Java Spark framework and different Java
Gremlin and Neo4j dependencies discussed in [13].

IV. RELATED WORK
From the appearance of object-oriented databases,

several authors explored the possibilities of representing the
object database model. In this section, we are going to
mention research proposals, which included graph
representation of the object database model, and vice versa.

In [14], authors introduced the graph-oriented object
database (GOOD) model, in which the object database
instance is represented as a graph, and different graph
transformation operations are used to manipulate data in the
object database. In GOOD, database objects are represented
as nodes of the graph, while the object relationships and
properties are represented as edges. The authors also
developed a graphical transformation language to perform
basic graph transformation operations, such as nodes and
edges addition/deletion, and abstraction. The language also
supports the method mechanism. The authors implemented a
database interface for interacting with the GOOD model as
well, which enables users to specify graph patterns and
GOOD programs, and to visually explore the graph
representation of the object base schema.

The GOOD model was later further discussed and
extended in several research papers ([15], [16]).

When it comes to representing graphs as objects, at the
time of writing this paper, it can be concluded that there has
not been much work done regarding this research topic,
especially in the context of graph databases. Neo4j Inc.
developed an object-graph-mapping (OGM) library called
Neo4j OGM, which role is to map graph nodes and
relationships to objects in the domain model of an
application written in Java programming language [6]. The
introduced OGM eliminates the need for using different
libraries for storing the domain model in the form of a graph
by abstracting the entire database. Like its equivalent Java
ORM library Hibernate, Neo4j OGM maps annotated Plain
Old Java Objects (POJOs) (e.g., NodeEntity, Relationship,
RelationshipEntity) to graph nodes and relationships [6].

Dietze et al. developed an open-source OGM framework
for Neo4j and Scala language called Renesca [17], which
consists of a graph database driver for executing queries and
an ER-modeling domain specific language (DSL).

V. INTRODUCING OBJECT-ORIENTED CONCEPTS TO
GRAPH DATABASES

In this section, we are going to discuss how some OO
concepts could be implemented in a graph database, i.e.,

Neo4j. To interact with Neo4j, queries will be executed
through the Gremlin By Example visual query language,
which was developed and discussed in previous work [18].
To showcase the proposed approach, nodes represented on
the model in Fig. 4 will be implemented by using OO
concepts. Also, a simple web interface has been developed
by using Java Spark. g p

Figure 4. Sample property graph data model

As discussed in Section 3, a node has one or multiple
labels (e.g., Author, Book, Person, etc.) and properties stored
as key-value pairs (e.g., Firstname, Lastname, Title, etc.).
Each node stored in a graph database can be located through
its unique identifier. Therefore, the properties of a node
resemble the properties of an object, which suggests that
nodes can be represented as objects.

Specifically, in our approach, node labels represent the
names of classes to be instantiated. Each node label
represents a group of nodes with the same role or meaning,
i.e., properties, whereas a class represents a type of all
objects with the same properties. Therefore, to create new
nodes in the database we must instantiate objects of
appropriate classes. For instance, to create a new Book node,
it is necessary to create a new object of class Book, which
has the definition shown in Fig. 5.

Figure 5. A Java definition of the Book class (node)

public class Book
{
 public string label;
 public string title;
 public string yearPublished;

 public Book (string label,
string title, string yearPublished){
 this.label = label;
 this.title = title;
 this.yearPublished =
yearPublished;
 }
}

118

As shown in Fig. 6, when the user selects the wanted
node label from the dropdown menu (in this case, Book), a
method will be called to retrieve properties of the Book class
defined earlier. The user then fills in the required values for
retrieved properties (book title and year it was published).
The entered data is then forwarded to the Book class
constructor as parameters, and a new object (Book class
instance) is created.)

Figure 6. Creating Book node instance

After the necessary object is created, this object is
forwarded to the method, which creates nodes in the
databases by executing Gremlin queries. Finally, the Gremlin
query implemented as shown in Fig. 7 will be executed to
create a new Book node.

Figure 7. A Java implementation of creating Book node with Gremlin

This approach enables us to create new nodes by
extending existing nodes. In this case, a new class can be
created by copying an existing class definition along with its
attributes and methods. For instance, the Book class can be
used to define the Journal class, i.e., the Journal class can
consist of properties copied from the Book class, along with
some additional properties specific for the Journal class. The
Journal class definition would then be as shown in Fig. 8.

In this example, the Journal class contains all properties
of the Book class, but it also contains the additional volume
property indicating the volume number of the journal. Thus,
when creating a new Journal node, i.e., object, the Journal
class constructor calls the Book class instructor as well.

The explained inheritance example can be seen as an
equivalent of the SQL LIKE operator in object-relational
databases, i.e., once the child node is created, any additional
change on the parent node (e.g., added or changed property)
will not reflect on the child node. The child node has the
same properties of the parent node, i.e., the same structure as
the parent node, but it can also be extended with additional
properties.

Figure 8. A Java definition of the Journal class (node)

VI. CONCLUSION
In this paper, we have discussed the basic concepts of the

object-oriented paradigm, and how these concepts were
implemented in relational databases. The main purpose of
this paper was to discuss how class instantiation and
inheritance could be implemented in graph databases. We
have developed a simple showcase to explain how nodes
could be stored as objects with the possibility of creating
new nodes based on existing nodes by copying existing
nodes’ definition.

Currently, nodes can inherit both properties and methods
of the parent node. In future work, we plan to introduce the
possibility to keep a connection between the parent and child
node by using some active mechanisms, which will monitor
and propagate any changes on the parent node on to the child
node. The ideas presented in this paper will be adjusted for
next generation incident command system. Furthermore, we
plan to support inheritance in its full capacity which means
that changes to parent nodes will be automatically
propagated to child nodes.

ACKNOWLEDGMENT
This research paper was supported by grant from the

North Atlantic Treaty Organization (NATO) Science for
Peace & Security Programme project called “Advanced
Regional Civil Emergency Coordination Pilot (ARCECP)”
(grant No. G498) in cooperation with NATO - Science for
Peace and Security (NATO SPS), US Department of
Homeland Security Science & Technology Doctorate, MIT
Lincoln Laboratory (MIT LL) and Croatian National
Protection and Rescue Directorate (NPRD).

try (Transaction tx = db.tx()) {
 vertex = db.addVertex(book.label);

 vertex.property("Label",
book.label);
 vertex.property("Title",
book.title);
vertex.property("YearPublished",
book.yearPublished);
 tx.commit();
}

public class Journal extends Book
{
 public string volume;

 public Journal (string label,
string title,
 string yearPublished, string
volume){
 this.super(label, title,
yearPublished);
 this.volume = volume;
 }
}

119

REFERENCES
[1] A. Snyder, “Encapsulation and inheritance in object-oriented

programming languages,” in ACM Sigplan Notices, 1986, vol. 21, no.
11, pp. 38–45.

[2] K. B. Bruce, Foundations of object-oriented languages: types and
semantics. MIT press, 2002.

[3] B. Wagner, L. Luke, W. Maira, and Petrusha Ron, “Classes (C#
Programming Guide).” [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/classes-and-structs/classes.

[4] R. Prieto-Diaz, “Status report: Software reusability,” IEEE Softw.,
vol. 10, no. 3, pp. 61–66, 1993.

[5] E. Bertino and L. Martino, “Object-oriented database management
systems: concepts and issues,” Computer (Long. Beach. Calif)., vol.
24, no. 4, pp. 33–47, 1991.

[6] Neo4j, “Neo4j OGM - An Object Graph Mapping Library for Neo4j
v3.0.” [Online]. Available: https://neo4j.com/docs/ogm-
manual/current/.

[7] W. Kim, “Object-Oriented Database Systems: Promises, Reality, and
Future.,” in VLDB, 1993, vol. 19, pp. 676–692.

[8] S. O. Ogunlere and S. A. Idowu, “Comparison Analysis of Object-
Based Databases, Object-Oriented Databases, and Object Relational
Databases,” Asian J. Comput. Inf. Syst. (ISSN 2321--5658), vol. 3, no.
2, 2015.

[9] D. Maier, J. Stein, A. Otis, and A. Purdy, Development of an object-
oriented DBMS, vol. 21, no. 11. ACM, 1986.

[10] IBM, “Table Inheritance,” 2011. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_11.70.0
/com.ibm.ddi.doc/ids_ddi_124.htm.

[11] T. P. G. D. Group, “Inheritance,” 2017. [Online]. Available:
https://www.postgresql.org/docs/10/static/ddl-inherit.html.

[12] R. J. Wilson, An introduction to graph theory. Pearson Education
India, 1970.

[13] M. Šestak, K. Rabuzin, and M. Novak, “Integrity constraints in graph
databases – implementation challenges,” in Proceedings of Central
European Conference on Information and Intelligent Systems, 2016,
pp. 23–30.

[14] M. Gyssens, J. Paredaens, J. den Bussche, and D. Van Gucht, “A
graph-oriented object database model,” IEEE Trans. Knowl. Data
Eng., vol. 6, no. 4, pp. 572–586, 1994.

[15] M. Gyssens, J. Paredaens, and D. Van Gucht, “A graph-oriented
object model for database end-user interfaces,” ACM SIGMOD Rec.,
vol. 19, no. 2, pp. 24–33, 1990.

[16] C. Tuijn and M. Gyssens, “CGOOD, a categorical graph-oriented
object data model,” Theor. Comput. Sci., vol. 160, no. 1–2, pp. 217–
239, 1996.

[17] F. Dietze, J. Karoff, A. C. Valdez, M. Ziefle, C. Greven, and U.
Schroeder, “An Open-Source Object-Graph-Mapping Framework for
Neo4j and Scala: Renesca,” in International Conference on
Availability, Reliability, and Security, 2016, pp. 204–218.

[18] K. Rabuzin, M. Maleković, and M. Šestak, “Gremlin By Example,”
in International Conference on Advances in Big Data Analytics,
2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

