
Creating Triggers with Trigger-By-Example in Graph Databases

Kornelije Rabuzin1 a and Martina Šestak1 b

1Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, 42000 Varaždin, Croatia
{krabuzin, msestak}@foi.hr

Keywords: Trigger-By-Example, Graph Databases, Triggers, Active Databases.

Abstract: In recent years, NoSQL graph databases have received an increased interest in the research community. Vari-
ous query languages have been developed to enable users to interact with a graph database (e.g. Neo4j), such
as Cypher or Gremlin. Although the syntax of graph query languages can be learned, inexperienced users may
encounter learning difficulties regardless of their domain knowledge or level of expertise. For this reason, the
Query-By-Example approach has been used in relational databases over the years. In this paper, we demon-
strate how a variation of this approach, the Trigger-By-Example approach, can be used to define triggers in
graph databases, specifically Neo4j, as database mechanisms activated upon a given event. The proposed ap-
proach follows the Event-Condition-Action model of active databases, which represents the basis of a trigger.
To demonstrate the proposed approach, a special graphical interface has been developed, which enables users
to create triggers in a short series of steps. The proposed approach is tested on several sample scenarios.

1 INTRODUCTION

The idea of active mechanisms able to react to
a specified event implemented in database systems
dates from 1975, when it was first implemented in
IBM’s System R. The idea was quite simple; it was
important to implement a mechanism that could be
able to react to different types of events that occur
primarily within the database or in its surroundings.
In database theory, such behaviour was described by
the concept of active (Event-Condition-Action, ECA)
rules. ECA rules are interpreted in the following way:
if some event occurs in the system, and some condi-
tions are fulfilled, then a given action (or set of ac-
tions) is automatically executed as a system’s reac-
tion to the event. The events defined in ECA rules
can vary in their complexity, ranging from simple
(e.g. basic data manipulation statements such as IN-
SERT, UPDATE and/or DELETE) to complex events,
which can be defined by means of simple events, or
events such as a sequence of events, negation, etc.
In database systems, ECA rules are most often im-
plemented through the trigger mechanism. A trigger
represents a database object written in a given proce-
dural language, which executes automatically when a
given event occurs.

To avoid manually writing the trigger func-

a https://orcid.org/0000-0002-0247-669X
b https://orcid.org/0000-0001-7054-4925

tion code for inexperienced users, the Trigger-By-
Example approach has been introduced to simplify
the process of designing database triggers. The
approach uses the Query-By-Example (QBE) as a
graphical interface for creating triggers (Lee et al.,
2000b), and makes the entire trigger design process
more user-friendly.

Nowadays, modern database systems need to han-
dle important challenges, such as large data volume,
data integrity, scalability, variety of data sources, un-
structured data, etc. Hence, in some application do-
mains, traditional relational databases have been ”re-
placed” by their NoSQL counterparts designed to bet-
ter adapt to these challenges. Graph databases are
a category of database solutions within the NoSQL
ecosystem designed to efficiently store and manage
highly interconnected data (for instance, social net-
work data).

Triggers as database objects have only been re-
cently introduced in a very few Graph Database Man-
agement Systems (GDBMSs) (e.g. Neo4j and Janus-
Graph), and they still require users of different levels
of expertise to have a certain level of query language
syntax knowledge. This research is motivated by this
issue, and the aim of this paper is to make the trigger
design process in graph databases easier, faster and
more understandable for different users.

The main contribution of this paper is an ap-
proach, which describes how to easily design and im-



plement triggers in graph databases. To implement
the proposed Trigger-By-Example approach in graph
databases, we implemented a graphical user interface
(GUI), which enables users to define triggers stored as
ECA rules, i.e., Cypher query language statements, in
a graph database (specifically, Neo4j).

The rest of the paper is organized as follows: Sec-
tion 2 contains an overview of existing research pa-
pers related to active databases, Trigger-By-Example
approach and developed graph-based rule specifica-
tion engines. In Section 3, a theoretical background is
given to help readers understand the concept of active
and graph databases and the TBE approach. In Sec-
tion 4 the proposed TBE approach in graph databases
is presented and demonstrated on simple Neo4j use
cases. Finally, we conclude this paper by describing
future research directions.

2 RELATED WORK

Over the years, there has been a number of research
papers, which introduced graph-based rule specifica-
tion engines and visual interfaces. During the 90s,
Dayal, Widom and Ceri published several relevant
research papers and books related to active database
systems. In these publications, the authors discussed
active database systems in general and their possible
application domains (Widom and Ceri, 1996), using
declarative approach to specify the model for active
rules execution (Ceri, 1992), rule execution semantics
and implementation (Dayal et al., 1994), etc.

Nowak, Bak and Jedrzejek developed a graph-
based prototype implementation of a graphical inter-
face for specifying rules (Nowak et al., 2012). Apart
from rule creation, the interface is able to perform rule
reasoning in order to obtain results. The rule cre-
ation process is carried out by specifying the body
(left hand side, LHS) and the head (right hand side,
RHS) of the rule in a form of two separate graphs,
which are then used to build ”if LHS then RHS” state-
ments. Created rules are able to check if there is a
given fact with specific attribute values in the knowl-
edge base, or if there exists a relationship between two
existing facts. The first condition type is supported
in the current state of our implementation, while the
relationship existence check will be part of our fu-
ture work. The authors used Jess rule engine for rule
creation and reasoning, which requires users to spec-
ify rule conditions by following Jess language syntax
similar to RDF. In the proposed approach, the users
can specify rules by simply following ”natural” se-
mantics, i.e., they do not need to be familiar with any
kind of syntax.

Next, Grüner, Weber and Epple explored the pos-
sibility of using rule-based systems for industrial au-
tomation (Grüner et al., 2014). Specifically, the au-
thors used Neo4j GDBMS and Cypher to build a rule-
based system, which will demonstrate the benefits of
using graph concepts to specify rules. In their ap-
proach, a rule consists of a premise (Cypher query)
and a conclusion (series of operations executed based
on results of the query evaluation), and it is stored in
XML format as a statement written in a descriptive
syntax similar to RuleML. However, in this approach,
the rules are created either manually on demand or
by the system, which lowers the need for users’ en-
gagement in the rule specification process. On the
other hand, our graphical interface for rule specifica-
tion provides more flexibility for the users, and it fur-
ther engages the user in the process by making it more
simple.

Furthermore, an interesting rule-based engine has
been introduced in (Rapsevicius and Juska, 2014).
The authors developed an expert system for the Com-
pact Muon Solenoid (CMS) Cathode Strip Chambers
detector at the Large Hadron Collider (LHC). One
of the system’s components is the rule-based com-
plex event processing (CEP) engine, which consists of
rules written in SQL syntax forming a decision tree.
In the context relevant for this paper, a rule presents a
named computational expression that results in a con-
clusion if expression conditions are met (Rapsevicius
and Juska, 2014). The CEP engine ensures that, for
each incoming data stream, a relevant rule is fired,
which evaluates the conditions, and returns a conclu-
sion based on that evaluation. The conclusion can
then be configured to perform a certain action, such
as sending notifications, execute commands, etc. The
rules definitions are stored within tables in a relational
databases, and the authors developed a GUI interface
for rules specification. Nevertheless, the interface re-
quires users to specify rules by using specific opera-
tors with no explicit syntax guidelines. Compared to
our proposed approach, the GUI requires users to still
have a level of syntax knowledge, whereas our ap-
proach enables users to specify rules in a completely
visual manner regardless of their level of knowledge
and experience.

The idea of active graph databases is still in its
early years of development. The most significant con-
tribution in this field has been made by Kankanamge
et al., who developed Graphflow, an active graph
database (Kankanamge et al., 2017). The system
is built on Neo4j, and uses Cypher++, a declara-
tive Cypher extension, which supports triggers as
subgraph-condition-action rules. Cypher++ support
the specification of rules, which are triggered on ex-



ecuting MATCH, CREATE, DELETE, UPDATE and
SHORTEST PATH queries, and such rules can result
in creating new versions of the underlying property
graph or writing a subgraph into a local file. The un-
derlying syntax of Cypher++ is equivalent to Cypher
query language. Moreover, Cypher++ represents one
of several implementations of the openCypher project
(Neo4j, 2018), which goal is to continually improve
Cypher query language, and make it a standardized
graph query language.

Figure 1: Graphflow system architecture (Kankanamge
et al., 2017).

In (DSG, 2017), the authors presented an
overview of Graphflow system architecture shown
in Figure 1. The system uses two query proces-
sors depending on the event type, that triggered the
rule. The one-time query processor is responsible for
handling Cypher statements (MATCH, UPDATE, IN-
SERT etc.), and perform updates on the underlying
graph store, whereas the continuous query processor
stores and evaluates subgraph-action rules in order to
perform given actions. In our case, all currently sup-
ported rules are processed by a single query processor.

3 BACKGROUND

3.1 Active databases and active rules

Active databases represent database solutions, which
rely on active (ECA) rules in order to automatically
react to certain events. In the context of active rules,
an event represents some change of state that requires
an intervention. The simplest types of events are:
• Statements such as INSERT, UPDATE, and/or

DELETE,
• Time events (absolute, relative and periodic),
• User-defined events,
• Transaction events (beginning/end of a transac-

tion),

• Method events (in object-oriented databases), etc.

Simple events can be joined (E1 and E2, E4 or
E3, etc.) and produce a complex event. Other types
of complex events would include:

• negation - an event did not happen within a given
time interval t,

• repeat - something repeated several times within a
given time interval t,

• sequence - several events occurred in a predefined
sequence, etc.

In order to model an active system, one has to
take care of objects, events and transactions, which
transform between database states by operating on
objects (Kangsabanik et al., 1997). A good Ac-
tive Database Management System (ADBMS) usu-
ally refers to a system, which supports more and dif-
ferent event types.

The ECA rule execution process contains several
steps. Once the event has been detected, it triggers
one or more rules. The conditions for triggered rules
have to be evaluated. We say that the rule is trig-
gered, but it is not a guarantee that it will be executed
because the rules condition component needs to be
evaluated. Based on the condition evaluation, rules
actions are executed (if the condition evaluation was
successful). Actions that are being executed could
trigger other (new) rules. Additionally, in (Herbst,
1996), the concept of ECAA rules was introduced
as an extension to ECA rules. In ECAA rule model,
if the condition for an occurred event is successfully
evaluated, the first action will be executed; otherwise,
an alternative action is executed.

3.2 Trigger-By-Example

The Trigger-By-Example (TBE) approach was first
introduced by Lee, Mao and Chu in (Lee et al.,
2000a). Since its roots can be traced to the Query-
By-Example approach/language, the main purpose of
TBE is to help user to write trigger rules more easily
through a graphical interface. As the authors suggest,
an important benefit of TBE is that, in its implementa-
tion as a layer between a visual interface and database
triggers, the TBE approach is loosely dependent on
the underlying database system used. Additionally,
database triggers written in SQL language are proce-
dural in nature, but the visual interface enables users
to specify rules in a declarative manner.

In (Lee et al., 2005), the same authors discussed
TBE properties in more detail. Each component of
the ECA rule is represented in a skeleton table differ-
entiated by their prefix (for instance, condition skele-
ton table is prefixed by C). In its early years, SQL



supported only INSERT, UPDATE and DELETE trig-
ger event types. Trigger condition definitions can be
categorized as either parameter filter or general con-
straint type. Parameter filter definition type is repre-
sented in the event skeleton table, and uses transition
variables (BEFORE or AFTER) to specify the condi-
tion. The general constraint type is used to represent
general triggers regardless of event types, so they are
represented in the condition skeleton table.

TBE can also be used as an integrity constraints
enforcement mechanism. The reason for this lies in
the fact that the underlying implementation enables
rule specification and processing necessary to main-
tain database integrity. The idea of maintaining graph
database integrity by following the TBE approach
will be implemented and discussed in the next sec-
tions.

3.3 Graph databases

Graph databases represent a NoSQL category, in
which data is stored as nodes and relationships be-
tween nodes. This idea is appropriate for many differ-
ent scenarios, including social network analysis, fraud
detection, IT infrastructure (computer networks), rec-
ommendation engines, etc. (https://neo4j.com/use-
cases/). Unlike a relational database, where during
query execution tables need to be joined to retrieve
values from more than one table, graph databases use
physical pointers between nodes. This eliminated the
need for complex joins, and increases the graph query
execution speed, making graph databases much faster,
especially when searching whether nodes are con-
nected, or when the shortest path between two nodes
needs to be found.

Various graph query languages have been devel-
oped for graph databases; the most often used lan-
guages are Cypher and Gremlin. In this paper, we
focus on Cypher query language, because it is used
much more often than Gremlin due to its declarative
nature and syntax similar to SQL.

There are many different statements supported in
Cypher, but at this point of time there is no native
Cypher statement for creating triggers, and the level
of support for triggers as specific database objects
in modern GDBMSs is rather low. For this reason,
we implemented a GUI, which enables users to spec-
ify simple ECA(A) rules, and store them in Neo4j
database for future usage during query execution.

At the moment, in Neo4j, triggers are supported
only as TransactionEventHandler objects, which ana-
lyze submitted database transactions and perform cer-
tain actions (De Marzi, 2015). The official Neo4j doc-
umentation supports three hooks, i.e., states, in which

trigger evaluation can be performed: beforeCommit,
afterCommit and afterRollback. On the other hand,
in JanusGraph, triggers can be implemented by using
user transaction logs, where triggers are registered for
a certain change in data (e.g. a new edge of given
type is added), and fire an external event or make ad-
ditional changes to the graph (JanusGraph, 2017).

4 METHODOLOGY

To demonstrate the proposed approach, we built an
application prototype by using Java 8 and Neo4j
graph database, which communicate via neo4j-java
driver. The prototype can be used as a graphical inter-
face to create active rules in Neo4j graph database.

There are two main approaches, which can be
used when building a system with active capabilities,
namely integrated and layered approach. The layered
approach includes extending the existing Database
Management System (DBMS) with an additional
layer, which adds the active capability to the DBMS.
This layer is responsible for event detection, rule ex-
ecution, etc. Conversely, the integrated approach
means that the DBMS core needs to be changed in
order to be able to detect events, evaluate rules and
manage transactions in a more advanced manner.

With the ADBMS implementation approaches in
mind, the following methodology has been used when
designing and implementing the Trigger-By-Example
approach:
• ECAA rules are used to gain better control of the

system’s behaviour in case when the condition is
not evaluated successfully,

• the application is built by following the layered
implementation approach, i.e., the application is
built as an extension to the Neo4j GDBMS,

• the condition component of active rules is per-
formed immediately,

• the action and alternative action execution com-
ponent of active rules is performed immediately,

• simple types of events are supported (INSERT,
UPDATE and DELETE operations).
To summarize, in the proposed TBE approach,

a graph database trigger is an ECAA rule evaluted
by the rule processing engine built on top of Neo4j
GDBMS to maintain database integrity. The engine
does not require any additional query processors, be-
cause the ECAA rule is not stored processed directly
in the database. Instead, the rule processing is carried
out on the application level, where the engine iden-
tifies rules needed to be checked for a given user’s
query.



At the moment, the proposed TBE approach sup-
ports the specification of BEFORE INSERT and AF-
TER INSERT triggers. In both cases, the TBE ap-
proach includes two steps:

1. Trigger (rule) specification, which includes defin-
ing the components of the ECA(A) rule, and

2. Trigger validation, which includes inserting
nodes/relationships to activate the trigger and test
its correctness.

4.1 Prerequisites

Before demonstrating the proposed TBE approach,
we built a Neo4j graph database based on a real
dataset available at https://www.kaggle.com/new-
york-city/new-york-city-current-job-postings. The
dataset contains information about New York City job
postings retrieved from the official New York jobs
site. In total, there are 3.238 rows in the downloaded
CSV file. By analyzing the contents and structure of
the dataset, we developed a property graph data model
to be implemented in Neo4j, and used for validation
purposes. A sample graph database entry represented
as nodes and relationships is depicted in the property
graph model shown in Figure 2.

Figure 2: A sample Neo4j database entry represented
through graph data model.

4.2 BEFORE INSERT trigger

The BEFORE INSERT trigger, which is activated
before a new node/relationship is inserted into the
database, can prevent users from inserting data incon-
sistent with business rules (e.g., the user can add a
new node only if some other node is already present
in the database).

Therefore, in the context of graph databases, to
create a new node of a specific label, it is first nec-
essary to check if there is a node of some other label
with a given property value in the database.

As shown in Figure 3, the specification step of a
BEFORE INSERT trigger includes selecting the la-
bel of a node, which will be monitored when in-
serting new nodes, and entering data about the node,
which needs to exist in the database with a given prop-
erty value in order to insert a node into the database.
The ECAA rule specified through a graphical inter-
face (Figure 3) can be visualized as a simple diagram
shown in Figure 4.

The rule will ensure that the user cannot add a
new job posting if there is no agency named ”NYC
HOUSING AUTHORITY”, which was mentioned on
a sample database entry shown in Figure 2. Also, note
that node labels displayed as dropdown options are re-
trieved from the database by executing the following
Cypher query:
MATCH (n) RETURN distinct labels(n)

In the underlying implementation, the created rule
(trigger) will be saved in a global list of rules, and ac-
tivated in the rule validation step, when a user tries to
create a new node labeled Node1. To check if there is
an existing node of a given label with given property
value, before committing the database transaction to
insert a node labeled Node1, the following program
code of the method will be executed:
String query="MATCH (n: " + label + ")

WHERE n." + property + "=’" + value + "’
RETURN n";

Result result = db.execute(query);
ResourceIterator<Node> resourceIterator =

result.columnAs("n");

if(resourceIterator.hasNext())
{

exists = true;
result.close();

}

In the method, the Cypher query will return the
given node if it exists as a Node object in the Resour-
ceIterator iterator object. If the iterator has an ele-
ment, i.e., the iterator is not empty, we can conclude
that the conditional node with given property value
exists. In this case, the value of variable exists indi-
cates whether the condition is fulfilled or not, which
affects the action component of the rule.

4.3 AFTER INSERT trigger

As its name indicates, AFTER INSERT trigger is ac-
tivated after the INSERT event is detected and the
specified condition fulfilled. In this paper, we specify



Figure 3: Creating a BEFORE INSERT trigger through graphical interface.

Figure 4: ECAA rule diagram of the BEFORE INSERT
trigger.

an AFTER INSERT trigger, which automatically up-
dates a node property value after a node with a given
label is inserted into the database.

This kind of update operation is often used for au-
tomated value insertions for given properties (in this
case, job level). Also, the AFTER INSERT trigger
can be used when performing data aggregations in
data warehouses, and help automatically maintain the
values of aggregated nodes in graph databases after
the values are aggregated by applying mathematical
functions (e.g. SUM()).

As depicted in Figure 5, the AFTER INSERT
trigger rule is specified by first entering the prop-
erty value required for a given node label, followed
by specifying which property value of a given node
should be updated and to which value. Note that in
this example, there were no alternative actions spec-
ified for this trigger, so the underlying rule model is
ECA-based.

The specified rule for the AFTER INSERT trigger
is also implemented as a method, which executes after
committing the transaction, in which a given node is

created in the database. Specifically, in this example,
the method first retrieves the nodes specified in the
rule by executing a Cypher query, which returns all
nodes labeled JobPosting.

For each node with a given label the value of level
property will be set to 0 after a new node labeled Job-
Posting with title property value ”Temporary painter”
is inserted into the database by executing the follow-
ing Cypher query:

MATCH (n:JobPosting {job_title: "Temporary
painter"}) SET n.level = 0
RETURN n

5 RESULTS

The rule validation step of the proposed TBE ap-
proach is performed by inserting nodes through the
developed graphical interface. Given the database
structure developed based on a real dataset and cre-
ated rules (triggers) depicted in Figures 3 and 5, we
entered node data, which could violate those rules (in
case of the BEFORE INSERT trigger), or simply acti-
vate the rules (in case of the AFTER INSERT trigger).

The BEFORE INSERT trigger presented in Sec-
tion 4.2 is created to ensure that a new node la-
beled JobPosting can only be inserted if there exists a
node labeled Agency having name property value set
to ”NYC HOUSING AUTHORITY”. At the initial
database state, when a user tries to create such node,
the condition of the ECAA rule is not satisfied, be-
cause there is no node labeled Agency with the given
property value in the database. Hence, the alternative
action of the rule is executed, which results in an error
message displayed to the user (Figure 7).



Figure 5: Creating an AFTER INSERT trigger through graphical interface.

Figure 6: ECA rule diagram of the AFTER INSERT trigger.

On the other side, the AFTER INSERT rule (trig-
ger) is validated automatically when we insert a node
labeled JobPosting with a title property value ”Tem-
porary painter”. After the node insertion process is
performed through the graphical interface, the action
specified by the ECA rule is performed, which up-
dates existing JobPosting node, and sets the node’s
level property value to 0. Hence, the AFTER INSERT
trigger will result in updated values of level property
to 0 for all job postings for ”Temporary painter” jobs.

6 DISCUSSION

As shown in the previous sections, the proposed TBE
approach in graph databases does not bring any ad-
ditional complexity to users when creating triggers in
graph databases. It has already been mentioned that
there is still no specific Cypher query language syn-

Figure 7: Error message displayed when a trigger’s rule
condition is not fulfilled.

tax dedicated to creating triggers. Therefore, our ap-
proach, which includes a graphical interface similar
to e.g. Microsoft Access presents a simple and under-
standable way to create ECA(A) rules. Additionally,
all queries specified through the interface executed in
short time.

In this paper, we have demonstrated how the ap-
proach can be used to implement database rules on
simple events, such as adding new nodes into the
database. Since the underlying implementation in-
cludes methods, which check each ECA(A) rule com-
ponent when the user tries to execute a database op-
eration, our approach can be easily extended to also
include complex events, such as SEQUENCE and
NEGATION.

The SEQUENCE event operator can be used to



check if several events occurred in a predefined se-
quence. In terms of graph databases, the SEQUENCE
operator could be used to ensure that specific ac-
tion(s) are automatically performed as a reaction to
the event when several nodes are created in a spec-
ified order. For instance, if a student fails an exam
in the first course (E1), second course (E2) and third
course (E3), this would mean that he is most likely
not going to finish the semester (A). However, such
case could be easily modeled as an ECA(A) rule for a
SEQUENCE operator and implemented by using our
TBE approach.

Furthermore, the NEGATION event operator can
also be important in graph databases because it can
prevent certain anomalies. For instance, once a user
creates two nodes, but fails to create a relationship
between these nodes, the NEGATION operator could
be used to notify the user that the relationship has not
been created between the nodes.

Our future work includes extending the proposed
TBE approach to support trigger specification for re-
lationships and complex events, such as SEQUENCE
and NEGATION. Also, we will conduct a more de-
tailed query performance test to gain insight into how
much the TBE approach affects the query time execu-
tion with the increasing complexity of events (rules)
implemented.

7 CONCLUSIONS

In this paper, we discussed the need for building
active database systems able to automatically react to
certain events and perform different actions. Triggers
as active mechanisms still face a low level of support
in graph databases with limited features. Current re-
search approaches to build graph-based rule engines
require users with different levels of knowledge and
expertise to be familiar with query language syntax,
which may require a certain learning period from the
users. Hence, in this paper, we propose to use Trigger-
By-Example approach/language for rule specification
in graph databases. We developed a prototype imple-
mentation of the proposed approach as a layer built on
Neo4j GDBMS, which enables users to specify trig-
gers as active rules. At the moment, our implemen-
tation supports handling simple events, such as IN-
SERT, UPDATE and DELETE, so, as part of our fu-
ture work, we plan to extend this support on complex
events, such as SEQUENCE and other. The proposed
TBE approach can be used to perform certain actions
in graph databases automatically, such as node data
aggregation or integrity enforcement mechanism.

REFERENCES

Ceri, S. (1992). A declarative approach to active databases.
In [1992] Eighth International Conference on Data
Engineering, pages 452–456. IEEE.

Dayal, U., Hanson, E., and Widom, J. (1994). Active
database systems. Technical report, Stanford InfoLab.

De Marzi, M. (2015). Triggers in neo4j. Avail-
able at https://maxdemarzi.com/2015/03/25/triggers-
in-neo4j/.

DSG, U. (2017). Graphflow. Available at
http://graphflow.io/.

Grüner, S., Weber, P., and Epple, U. (2014). Rule-based en-
gineering using declarative graph database queries. In
2014 12th IEEE International Conference on Indus-
trial Informatics (INDIN), pages 274–279. IEEE.

Herbst, H. (1996). Business rules in systems analysis: a
meta-model and repository system. Information Sys-
tems, 21(2):147–166.

JanusGraph (2017). Transaction log. Available at
https://docs.janusgraph.org/latest/log.html.

Kangsabanik, P., Mall, R., and Majumdar, A. K. (1997). A
technique for modeling applications in active object
oriented database management systems. Information
Sciences, 102(1-4):67–103.

Kankanamge, C., Sahu, S., Mhedbhi, A., Chen, J., and
Salihoglu, S. (2017). Graphflow: An active graph
database. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
1695–1698. ACM.

Lee, D., Mao, W., Chiu, H., and Chu, W. W. (2000a). Tbe:
A graphical interface for writing trigger rules in active
databases. In Advances in Visual Information Man-
agement, pages 367–386. Springer.

Lee, D., Mao, W., Chiu, H., and Chu, W. W. (2005). De-
signing triggers with trigger-by-example. Knowledge
and information systems, 7(1):110–134.

Lee, D., Mao, W., and Chu, W. W. (2000b). Tbe: Trigger-
by-example. In International Conference on Concep-
tual Modeling, pages 112–125. Springer.

Neo4j, I. (2018). opencypher. Available on May 15, 2019
at https://www.opencypher.org/about.

Nowak, M., Bak, J., and Jedrzejek, C. (2012). Graph-based
rule editor. In RuleML (2).

Rapsevicius, V. and Juska, E. (2014). Expert system
for the lhc cms cathode strip chambers (csc) detec-
tor. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment, 738:126–131.

Widom, J. and Ceri, S. (1996). Active database systems:
Triggers and rules for advanced database processing.
Morgan Kaufmann.


